Гипохлорит натрия

Гипохлорит натрия

ТУ 6-01-29-93

NaOCl

Гипохлорит натрия (натрий хлорноватистокислый) — NaOCl, неорганическое соединение, натриевая соль хлорноватистой кислоты. Тривиальное (историческое) название водного раствора соли — «лабарракова вода» или «жавелевая вода».

Соединение в свободном состоянии очень неустойчиво, обычно используется в виде относительно стабильного пентагидрата NaOCl · 5H2O или водного раствора, имеющего характерный резкий запах хлора и обладающего высокими коррозионными свойствами.

Соединение — сильный окислитель, содержит 95,2 % активного хлора. Обладает антисептическим и дезинфицирующим действием. Используется в качестве бытового и промышленного отбеливателя и дезинфектанта, средства очистки и обеззараживания воды, окислителя для некоторых процессов промышленного химического производства. Как бактерицидное и стерилизующее средство применяется в медицине, пищевой промышленности и сельском хозяйстве.

Физические свойства
Молярная масса 74,443 г/моль
Плотность пентагидрат: 1,574 г/см³;
1,1
Термические свойства
Т. плав. NaOCl · 5H2O: 24,4 °C;
NaOCl · 2,5H2O: 57,5
Т. разл. 5%-й раствор: 40 °C
Энтальпия образования пентагидрат: − 350,4 кДж/моль
Химические свойства
Растворимость в воде NaOCl · 5H2O (20 °C): 53,4
Растворимость в в воде NaOCl · 2,5H2O (50 °C): 129,9

Физические свойства

Безводный гипохлорит натрия представляет собой неустойчивое бесцветное кристаллическое вещество. Элементный состав: Na (30,9 %), Cl (47,6 %), O (21,5 %).

Хорошо растворим в воде: 53,4 г в 100 граммах воды (130 г на 100 г воды при 50 °C).

У соединения известно три кристаллогидрата:

  • моногидрат NaOCl · H2O — крайне неустойчив, разлагается выше 60 °C, при более высоких температурах — со взрывом.
  • NaOCl · 2,5H2O — более устойчив, плавится при 57,5 °C.
  • пентагидрат NaOCl · 5H2O — наиболее устойчивая форма, представляет собой бледно-зеленовато-жёлтые (технического качества — белые) ромбические кристаллы (a = 0,808 нм, b = 1,606 нм, c = 0,533 нм, Z = 4). Не гигроскопичен, хорошо растворим в воде (в г/100 граммов воды, в пересчёте на безводную соль): 26 (−10 °C), 29,5 (0 °C), 38 (10 °C), 82 (25 °C), 100 (30 °C). В воздухе расплывается, переходя в жидкое состояние, из-за быстрого разложения. Температура плавления: 24,4 °C (по другим данным: 18 °C), при нагревании (30—50 °C) разлагается.

Плотность водного раствора гипохлорита натрия при 18 °C

   Плотность, г/л 1 % 2 % 4 % 6 % 8 % 10 % 14 %
1005,3 1012,1 1025,8 1039,7 1053,8 1068,1 1097,7
18 % 22 % 26 % 30 % 34 % 38 % 40 %
1128,8 1161,4 1195,3 1230,7 1268,0 1308,5 1328,5

Температура замерзания водных растворов гипохлорита натрия различных концентраций

   Температура замерзания, °C 0,8 % 2 % 4 % 6 % 8 % 10 % 12 % 15,6 %
−1,0 −2,2 −4,4 −7,5 −10,0 −13,9 −19,4 −29,7

Термодинамические характеристики гипохлорита натрия в бесконечно разбавленном водном растворе:

  • стандартная энтальпия образования, ΔHo298: −350,4 кДж/моль;
  • стандартная энергия Гиббса, ΔGo298: −298,7 кДж/моль.

Химические свойства

Разложение и диспропорционирование

Гипохлорит натрия — неустойчивое соединение, легко разлагающееся с выделением кислорода:

{\mathsf  {2NaOCl=2NaCl+O_{2}}}

Самопроизвольное разложение медленно происходит даже при комнатной температуре: за 40 суток пентагидрат (NaOCl · 5H2O) теряет 30 % активного хлора. При температуре 70 °C разложение безводного гипохлорита протекает со взрывом.

При нагревании параллельно происходит реакция диспропорционирования:

{\mathsf  {3NaOCl=NaClO_{3}+2NaCl}}

Гидролиз и разложение в водных растворах

Растворяясь в воде, гипохлорит натрия диссоциирует на ионы:

{\mathsf  {NaOCl\ {\xrightarrow  {H_{2}O}}\ Na^{+}+OCl^{-}}}

Так как хлорноватистая кислота (HOCl) очень слабая (pKa = 7,537), гипохлорит-ион в водной среде подвергается гидролизу:

{\mathsf  {OCl^{-}\!+H_{2}O\leftrightarrows HOCl+OH^{-}}}

Именно наличие хлорноватистой кислоты в водных растворах гипохлорита натрия объясняет его сильные дезинфицирующие и отбеливающие свойства

Водные растворы гипохлорита натрия неустойчивы и со временем разлагаются даже при обычной температуре (0,085 % в сутки). Распад ускоряет освещение, ионы тяжёлых металлов и хлориды щелочных металлов; напротив, сульфат магния, ортоборная кислота, силикат и гидроксид натрия замедляют процесс; при этом наиболее устойчивы растворы с сильнощелочной средой (pH > 11).

В сильнощелочной среде (pH > 10), когда гидролиз гипохлорит-иона подавлен, разложение происходит следующим образом:

{\mathsf  {2OCl^{-}\!=2Cl^{-}\!+O_{2}}}

При температурах выше 35 °C распад сопровождается реакцией диспропорционирования:

{\mathsf  {3OCl^{-}\!=2Cl^{-}\!+ClO_{3}^{-}}}

При диапазоне pH от 5 до 10, когда концентрация хлорноватистой кислоты в растворе становится заметной, разложение идёт по следующей схеме[15]:

{\mathsf  {HOCl+2ClO^{-}=ClO_{3}^{-}+2Cl^{-}+H^{+}}}
{\mathsf  {HOCl+ClO^{-}\!=O_{2}+2Cl^{-}\!+H^{+}}}

В кислой среде разложение HOCl ускоряется, а в очень кислой среде (pH < 3) при комнатной температуре наблюдается распад по следующей схеме[13]:

{\mathsf  {4HOCl=2Cl_{2}+O_{2}+2H_{2}O}}

Если для подкисления используется соляная кислота, в результате выделяется хлор:

{\mathsf  {NaOCl+2HCl=NaCl+Cl_{2}\!\uparrow \!+H_{2}O}}

Пропуская через охлаждённый водный раствор гипохлорита натрия углекислый газ, можно получить раствор хлорноватистой кислоты:

{\mathsf  {NaOCl+H_{2}O+CO_{2}=NaHCO_{3}\!\downarrow \!+HOCl}}

Окислительные свойства

Водный раствор гипохлорита натрия — сильный окислитель, вступающий в многочисленные реакции с разнообразными восстановителями, независимо от кислотно-щелочного характера среды.

Рассмотрим основные варианты развития окислительно-восстановительного процесса и стандартные электродные потенциалы полуреакций в водной среде:

  • в кислой среде:
{\mathsf  {NaOCl+H^{+}=Na^{+}+HOCl}}
      {\mathsf  {2HOCl+2H^{+}\!+2e^{-}=Cl_{2}\!\uparrow \!+2H_{2}O}} E^{o}{\mathsf  {=1,630B}}
      {\mathsf  {HOCl+H^{+}\!+2e^{-}=Cl^{-}\!+H_{2}O}} E^{o}{\mathsf  {=1,500B}}
  • в нейтральной и щелочной среде:
      {\mathsf  {OCl^{-}\!+H_{2}O+2e^{-}=Cl^{-}\!+2OH^{-}}} E^{o}{\mathsf  {=0,890B}}
      {\mathsf  {2OCl^{-}\!+2H_{2}O+2e^{-}=Cl_{2}\!\uparrow \!+\ 4OH^{-}}} E^{o}{\mathsf  {=0,421B}}

Некоторые окислительно-восстановительные реакции с участием гипохлорита натрия:

  • Иодиды щелочных металлов окисляются до иода (в слабокислой среде), иодата (в нейтральной среде) или периодата (в щелочной среде)[13]:
{\mathsf  {NaOCl+2NaI+H_{2}O=NaCl+I_{2}+2NaOH}}
{\mathsf  {3NaOCl+NaI=3NaCl+NaIO_{3}}}
{\mathsf  {4NaOCl+NaI=4NaCl+NaIO_{4}}}
  • сульфиты окисляются в сульфаты, нитриты в нитраты, оксалаты и формиаты в карбонаты и т. п.[13]:
{\mathsf  {NaOCl+K_{2}SO_{3}=NaCl+K_{2}SO_{4}}}
{\mathsf  {2NaOCl+Ca(NO_{2})_{2}=2NaCl+Ca(NO_{3})_{2}}}
{\mathsf  {NaOCl+NaOH+HCOONa=NaCl+Na_{2}CO_{3}+H_{2}O}}
  • Фосфор и мышьяк растворяются в щелочном растворе гипохлорита натрия, образуя соли фосфорной и мышьяковой кислот[18]:[стр. 169]:
{\mathsf  {2As+6NaOH+5NaOCl=2Na_{3}AsO_{4}+5NaCl+3H_{2}O}}
  • Аммиак под действием гипохлорита натрия через стадию образования хлорамина, превращается в гидразин (аналогично реагирует и мочевина)[18]:[стр. 181]:
{\mathsf  {NaOCl+NH_{3}=NaOH+NH_{2}Cl}}
{\mathsf  {NH_{2}Cl+NaOH+NH_{3}=N_{2}H_{4}+NaCl+H_{2}O}}
  • Соединения металлов с низшими степенями окисления превращаются в соединения с высшими степенями окисления[18]:[стр. 138, 308][19]:[стр. 200]:
{\mathsf  {NaOCl+PbO=NaCl+PbO_{2}}}
{\mathsf  {2NaOCl+MnCl_{2}+4NaOH=Na_{2}MnO_{4}+4NaCl+2H_{2}O}}
{\mathsf  {3NaOCl+2Cr(OH)_{3}+4NaOH=2Na_{2}CrO_{4}+3NaCl+5H_{2}O}}
По аналогии можно осуществить превращения: Fe(II) → Fe(III) → Fe(VI); Co(II) → Co(III) → Co(IV); Ni(II) → Ni(III); Ru(IV) → Ru(VIII); Ce(III) → Ce(IV) и прочие.

Идентификация

Среди качественных аналитических реакций на гипохлорит-ион можно отметить выпадение коричневого осадка метагидроксида при добавлении при комнатной температуре испытуемого образца к щелочному раствору соли одновалентного таллия (предел обнаружения 0,5 мкг гипохлорита):

{\mathsf  {2NaOCl+Tl_{2}SO_{4}+2NaOH=2TlO(OH)\!\downarrow +2NaCl+Na_{2}SO_{4}}}

Другой вариант — иодкрахмальная реакция в сильнокислой среде и цветная реакция с 4,4’-тетраметилдиаминодифенилметаном или n, n’-диокситрифенилметаном в присутствии бромата калия[21].

Распространённым методом количественного анализа гипохлорита натрия в растворе является потенциометрический анализ методом добавок анализируемого раствора к стандартному раствору (МДА) или метод уменьшения концентрации анализируемого раствора при его добавлении к стандартному раствору (МУА) с использованием бром-ионоселективного электрода (Br-ИСЭ).

Также используется титриметрический метод с использованием иодида калия (косвенная иодометрия).

Коррозионное воздействие

Гипохлорит натрия оказывает довольно сильное коррозионное воздействие на различные материалы, о чём свидетельствуют приведённые ниже данные:

Материал Концентрация NaOCl, масс. % Форма воздействия Температура, °C Скорость и характер коррозии
  Алюминий твёрдый, влажный 25 > 10 мм/год
10; pH>7 водный раствор 25 > 10 мм/год
  Медь 2 водный раствор 20 < 0,08 мм/год
20 водный раствор 20 > 10 мм/год
  Медные сплавы:
  БрА5, БрА7, Л59, Л63, Л68, Л80, ЛО68-1
10 водный раствор 20 > 10 мм/год
  Никель < 34 водный раствор 20 0,1—3,0 мм/год
  Никелевый сплав НМЖМц28-2,5-1,5 < 34; активный хлор: 3 водный раствор 20 0,007 мм/год
  Никелевый сплав Н70МФ < 34 водный раствор 35—100 < 0,004 мм/год
  Платина < 34 водный раствор < 100 < 0,1 мм/год
  Свинец < 34; активный хлор: 1 водный раствор 20 0,54 мм/год
40 1,4 мм/год
  Серебро < 34 водный раствор 20 < 0,1 мм/год
  Сталь Ст3 твёрдый, безводный 25—30 < 0,05 мм/год
0,1; pH > 10 водный раствор 20 < 0,1 мм/год
> 0,1 водный раствор 25 > 10,0 мм/год
  Сталь 12Х17, 12Х18Н10Т 5 водный раствор 20 > 10,0 мм/год
  Сталь 10Х17Н13М2Т < 34; активный хлор: 2 водный раствор 40 < 0,001 мм/год
T кип. 1,0—3,0 мм/год
  Сталь 06ХН28МДТ < 34 водный раствор 20—T кип. < 0,1 мм/год
  Тантал < 34 водный раствор 20 < 0,05 мм/год
  Титан 10—20 водный раствор 25—105 < 0,05 мм/год
40 водный раствор 25 < 0,05 мм/год
  Цирконий 10 водный раствор 30—110 < 0,05 мм/год
20 водный раствор 30 < 0,05 мм/год
  Чугун серый < 0,1; pH > 7 водный раствор 25 < 0,05 мм/год
> 0,1 водный раствор 25 > 10,0 мм/год
  Чугун СЧ15, СЧ17 < 34 водный раствор 25—105 < 1,3 мм/год
  Асбест 14 водный раствор 20—100 стоек
  Графит, пропитанный феноло-формальдегидным олигомером 25 водный раствор Т кип. стоек
  Полиамиды < 34 водный раствор 20—60 стоек
  Поливинилхлорид < 34 водный раствор 20 стоек
65 относительно стоек
  Полиизобутилен < 34 водный раствор 20 стоек
60 относительно стоек
100 нестоек
  Полиметилметакрилат < 34 водный раствор 20 стоек
  Полиэтилен < 34 водный раствор 20—60 стоек
  Полипропилен < 34 водный раствор 20—60 стоек
  Резина на основе бутилкаучука 10 водный раствор 20—65 стоек
насыщенный водный раствор 65 стоек
  Резина на основе натурального каучука 10—30 водный раствор 65 стоек
  Резина на основе кремнийорганического каучука любая водный раствор 20—100 стоек
  Резина на основе фторкаучука < 34 водный раствор 20—93 стоек
  Резина на основе хлоропренового каучука 20 водный раствор 24 относительно стоек
насыщенный водный раствор 65 нестоек
  Резина на основе хлорсульфированного полиэтилена < 34 водный раствор 20—60 стоек
  Стекло < 34 водный раствор 20—60 стоек
  Фторопласт любая водный раствор 20—100 стоек
  Эмаль кислотостойкая любая водный раствор < 100 стоек
Т кип. относительно стоек

Физиологическое действие и воздействие на окружающую среду

NaOCl одно из лучших известных средств, проявляющих благодаря гипохлорит-иону сильную антибактериальную активность. Он убивает микроорганизмы очень быстро и уже в очень низких концентрациях.

Наивысшая бактерицидная способность гипохлорита проявляется в нейтральной среде, когда концентрации HClO и гипохлорит-анионов ClO приблизительно равны (см. подраздел «Гидролиз и разложение в водных растворах»). Разложение гипохлорита сопровождается образованием ряда активных частиц и, в частности, синглетного кислорода, обладающего высоким биоцидным действием. Образующиеся частицы принимают участие в уничтожении микроорганизмов, взаимодействуя с биополимерами в их структуре, способными к окислению. Исследованиями установлено, этот процесс аналогичен тому что происходит естественным образом во всех высших организмах. Некоторые клетки человека (нейтрофилы, гепатоциты и др.) синтезируют хлорноватистую кислоту и сопутствующие высокоактивные радикалы для борьбы с микроорганизмами и чужеродными субстанциями.

Дрожжеподобные грибы, вызывающие кандидоз, Candida albicans, погибают in vitro в течение 30 секунд при действии 5,0—0,5%-го раствора NaOCl; при концентрации действующего вещества ниже 0,05 % они проявляют устойчивость спустя 24 часа после воздействия. Более резистентны к действию гипохлорита натрия энтерококки. Так, например, патогенный Enterococcus faecalis погибает через 30 секунд после обработки 5,25%-м раствором и через 30 минут после обработки 0,5%-м раствором. Грамотрицательные анаэробные бактерии, такие как Porphyromonas gingivalis, Porphyromonas endodontalis и Prevotella intermedia[К 11], погибают в течение 15 секунд после обработки 5,0—0,5%-м раствором NaOCl.

Несмотря на высокую биоцидную активность гипохлорита натрия, следует иметь в виду, что некоторые потенциально опасные простейшие организмы, например, возбудители лямблиоза или криптоспоридиоза , устойчивы к его действию.

Высокие окислительные свойства гипохлорита натрия позволяют его успешно использовать для обезвреживания различных токсинов. В приведённой ниже таблице представлены результаты инактивации токсинов при 30-минутной экспозиции различных концентраций NaOCl («+» — токсин инактивирован; «−» — токсин остался активен):

Токсин 2,5 % NaOCl +
0,25 н NaOH
2,5 % NaOCl 1,0 % NaOCl 0,1 % NaOCl
  Т-2 токсин +
  Бреветоксин + +
  Микроцистин + + +
  Тетродотоксин + + +
  Сакситоксин + + + +
  Палитоксин + + + +
  Рицин + + + +
  Ботулотоксин + + + +

На организм человека гипохлорит натрия может оказывать вредное воздействие. Растворы NaOCl могут быть опасны при ингаляционном воздействии из-за возможности выделения токсичного хлора (раздражающий и удушающий эффект). Прямое попадание гипохлорита в глаза, особенно при высоких концентрациях, может вызвать химический ожог и даже привести к частичной или полной потере зрения. Бытовые отбеливатели на основе NaOCl могут вызвать раздражение кожи, а промышленные привести к серьёзным язвам и отмиранию ткани. Приём внутрь разбавленных растворов (3—6 %) гипохлорита натрия приводит обычно только к раздражению пищевода и иногда ацидозу, в то время как концентрированные растворы способны вызвать довольно серьёзные повреждения, вплоть до перфорации желудочно-кишечного тракта.

Несмотря на свою высокую химическую активность, безопасность гипохлорита натрия для человека документально подтверждена исследованиями токсикологических центров Северной Америки и Европы, которые показывают, что вещество в рабочих концентрациях не несёт каких-либо серьёзных последствий для здоровья после непреднамеренного проглатывания или попадания на кожу. Также подтверждено, что гипохлорит натрия не является мутагенным, канцерогенным и тератогенным соединением, а также кожным аллергеном. Международное агентство по изучению рака пришло к выводу, что питьевая вода, прошедшая обработку NaOCl, не содержит человеческих канцерогенов[31].

Пероральная токсичность соединения:

  • Мыши: ЛД50 (англ. LD50) = 5800 мг/кг;
  • Человек (женщины): минимально известная токсическая доза (англ. TDLo) = 1000 мг/кг.

Внутривенная токсичность соединения[32]:

  • Человек: минимально известная токсическая доза (англ. TDLo) = 45 мг/кг.

При обычном бытовом использовании гипохлорит натрия распадается в окружающей среде на поваренную соль, воду и кислород. Другие вещества могут образоваться в незначительном количестве. По заключению Шведского института экологических исследований, гипохлорит натрия, скорее всего, не создаёт экологических проблем при его использовании в рекомендованном порядке и количествах.

Гипохлорит натрия не представляет угрозы с точки зрения пожароопасности.

Рейтинг NFPA 704 для концентрированных растворов (10—20 %):

Лабораторные методы получения

Основным лабораторным методом получения гипохлорита натрия является пропускание газообразного хлора через охлаждённый насыщенный раствор гидроксида натрия:

{\mathsf  {Cl_{2}+2NaOH=NaOCl+NaCl+H_{2}O}}

Для отделения из реакционной смеси хлорида натрия (NaCl) используют охлаждение до температуры близкой к 0 °C — в этих условиях соль выпадает в осадок. Дальнейшим замораживанием смеси (−40 °C) и последующей кристаллизацией при −5 °C получают пентагидрат гипохлорита натрия NaOCl · 5H2O. Безводную соль можно получить обезвоживанием в вакууме над концентрированной серной кислотой.

Вместо гидроксида для синтеза можно взять карбонат натрия:

{\mathsf  {Cl_{2}+2Na_{2}CO_{3}+H_{2}O=NaOCl+NaCl+2NaHCO_{3}}}

Водный раствор гипохлорита натрия можно получить обменной реакцией карбоната натрия с гипохлоритом кальция[36]:

{\mathsf  {Ca(OCl)_{2}+Na_{2}CO_{3}=2NaOCl+CaCO_{3}\!\downarrow }}

Промышленное производство

Мировое производство

Оценка мирового объёма производства гипохлорита натрия представляет определённую трудность в связи с тем, что значительная его часть производится электрохимическим способом по принципу «in situ», то есть на месте его непосредственного потребления (речь идёт об использовании соединения для дезинфекции и подготовки воды). По данным на 2005 год, приблизительный глобальный объём производства NaOCl составил около 1 млн тонн, при этом почти половина этого объёма была использована для бытовых, а другая половина — для промышленных нужд.

Обзор промышленных способов получения

Выдающиеся отбеливающие и дезинфекционные свойства гипохлорита натрия привели к интенсивному росту его потребления, что в свою очередь дало стимул для создания крупномасштабных промышленных производств.

В современной промышленности существует два основных метода производства гипохлорита натрия:

  • химический метод — хлорирование водных растворов гидроксида натрия;
  • электрохимический метод — электролиз водного раствора хлорида натрия.

В свою очередь, способ химического хлорирования, предлагает две производственные схемы:

  • основной процесс, где в качестве конечного продукта образуется разбавленный (около 16 % NaOCl) раствор гипохлорита с примесью хлорида и гидроксида натрия;
  • низко-солевой или концентрированный процесс — позволяет получить концентрированный (25—40 % NaOCl) с меньшим уровнем загрязнения.

Химический метод

Сущность химического метода получения NaOCl не изменилась с момента его открытия Лабарраком

{\mathsf  {Cl_{2}+2NaOH=NaCl+NaOCl+H_{2}O}}

Современный химический гигант Dow Chemical Company был одной из первых компаний, поставивших производство гипохлорита натрия на масштабную промышленную основу. В 1898 году открылся первый завод компании по выпуску NaOCl химическим способом. Другой компанией, благодаря которой, это вещество достигло сегодняшней популярности, стала Clorox — крупнейший производитель бытовых отбеливателей в США. С момента основания в 1913 году, вплоть до 1957 года, когда компанию приобрёл концерн Procter & Gamble, отбеливатель на основе гипохлорита натрия Clorox Bleach® был единственным продуктом в её ассортименте.

Современная технологическая схема непрерывного производства гипохлорита натрия представлена на рисунке

Технологическая схема производства гипохлорита натрия

Низкосолевой процесс производства, в отличие от основной технологической схемы, представленной выше, включает в себя две стадии хлорирования, причём в кристаллизатор (см. на рисунке), где происходит концентрирование готового продукта, подаётся разбавленный раствор NaOCl из первого реактора

Технологическая схема производства гипохлорита натрия

В России товарный гипохлорит натрия производят следующие предприятия:

  • «Каустик», ЗАО (Стерлитамак);
  • «Каустик», ОАО (Волгоград);
  • «Новомосковский хлор», ООО (Новомосковск);
  • «Сода-хлорат», ООО (Березники).

Электрохимический метод

Электрохимический метод получения гипохлорита натрия заключается в электролизе водного раствора хлорида натрия или морской воды в электролизёре с полностью открытыми электродными зонами (бездиафрагменный способ), то есть продукты электролиза свободно смешиваются в электрохимическом процессе.

Процесс на аноде:

{\mathsf  {2Cl^{-}\!\!-2e^{-}=Cl_{2}}}

Процесс на катоде:

{\mathsf  {2H^{+}+2e^{-}=H_{2}}}

Процесс в электролизёре за счёт химического взаимодействия образующихся продуктов:

{\mathsf  {Cl_{2}+OH^{-}\ {\xrightarrow  {e^{-}}}\ Cl^{-}\!+HOCl}}

Общая схема процесса:

{\mathsf  {NaCl+H_{2}O=NaOCl+H_{2}}}

Электрохимический метод используется, в основном, для получения дезинфицирующего раствора для систем водоочистки. Удобство этого метода заключается в том, что производство гипохлорита не требует поставок хлора, его можно производить сразу на месте водоподготовки, избежав, тем самым, расходов на доставку; кроме того, метод позволяет производить гипохлорит в достаточно широком диапазоне объёмов выработки: от очень малых до крупнотоннажных.

В мире существуют множество различных производителей электролизёров для получения растворов гипохлорита натрия, среди которых наиболее распространены системы компании Severn Trent De Nora: Seaclor и Sanilec.

Система Seaclor® является преобладающей технологией производства гипохлорита натрия из морской воды электрохимическим методом, занимая свыше 70 % всех мировых мощностей. Более 400 установок Seaclor® работают в 60 странах; их суммарная производительность составляет порядка 450 тыс. тонн NaOCl в год, единичная мощность колеблется в диапазоне 227—22 680 кг/день. Установки позволяют получать концентрацию активного хлора в растворе в диапазоне 0,1—0,25 %.

Установки Sanilec® выпускаются производительностью от 1,2 (портативные генераторы) до 21 600 кг/день, концентрация активного хлора составляет 0,05—0,25 %.

Характеристика продукции, обращение, хранение и транспортировка

В Российской Федерации гипохлорит натрия выпускается в соответствии с ГОСТ 11086-76 «Гипохлорит натрия. Технические условия». В соответствии с этим документом, по назначению NaOCl делится на две марки, характеристики которых представлены ниже:

Наименование показателя Марка А Марка Б
  Внешний вид Жидкость зеленовато-жёлтого цвета
  Коэффициент светопропускания Не менее 20 %
  Массовая концентрация активного хлора, г/дм³, не менее 190 170
  Массовая концентрация щёлочи в пересчёте на NaOH, г/дм³ 10—20 40—60
  Массовая концентрация железа, г/дм³, не более 0,02 0,06
  Область применения В химической промышленности для обеззараживания воды, дезинфекции и отбелки В витаминной промышленности (как окислитель) и для отбеливания ткани

Гипохлорит натрия должен храниться в защищённых от света, специальных полиэтиленовых, стальных гуммированных или других, покрытых коррозионно-стойкими материалами ёмкостях, наполненных на 90 % объёма и оборудованных воздушником для сброса образующегося при распаде кислорода. Перевозка продукции осуществляется в соответствии с правилами транспортировки опасных грузов.

Растворы товарного гипохлорита натрия со временем теряют свою активность из-за разложения NaOCl. Следующая таблица наглядно показывает, что с течением времени концентрация активного вещества в растворах уменьшается. Тем не менее, как видно из полученной диаграммы, с уменьшением концентрации гипохлорита скорость его распада также уменьшается и промышленные растворы стабилизируются:

Стабильность растворов гипохлорита натрия возрастает с уменьшением концентрации
Концентрация NaOCl, % Период полуразложения, дней
25 °C 35 °C
    15 144 39
    12 180 48
    9 240 65
    6 360 97
    3 720 194
    1 2160 580

Наиболее стабильны для хранения водные растворы гипохлорита, имеющие pH в диапазоне 11,86−13.

Применение

Водный растворр гипохлорита натрия применяют при дезинфекции, так как обладает высокой антибактериальной активностью при воздействия на разные микроорганизмы.

Гипохлорит натрия используется для:

  • для обработки питьевой воды и воды бассейнов для плавания;
  • в химической пром-сти для производства средств для отбеливания;
  • для дезинфекции сточных вод;
  • как окислитель при отбеливании тканей;
  • для обеззараживания воды рыбохозяйственных водоёмов, так как раствор гипохлорит анатрия убивает все виды болезнетворных агентов;
  • для обработки помещений на предприятиях общепита и в медучреждениях;
© 2017-2024 himmax.ru