Бериллий оксид ТУ 6-09-01-413-77
BeO
Оксид бериллия — амфотерный оксид, имеющий химическую формулу BeO.
В зависимости от способа получения, при стандартных условиях, оксид бериллия представляет собой белое кристаллическое или аморфное вещество без вкуса и запаха, очень малорастворимое в воде. Растворяется в концентрированных минеральных кислотах и щелочах, хорошо растворим в щелочных расплавах[2][3].
Оксид бериллия является единственным бинарным соединением бериллия с кислородом, хотя в паровой фазе над ВеО при температуре около 2000°С было отмечено присутствие полимеров типа (ВеО)3 и (ВеО)4.
Получение и свойства
В природе оксид бериллия встречается в виде минерала бромеллита.
Получают оксид бериллия термическим разложение гидроксида бериллия и некоторых его солей (например, нитрата, основного ацетата, карбоната и др.) при температуре от 500 до 1000°С. Полученный таким образом оксид представляет собой белый аморфный порошок. В виде кристаллов оксид бериллия может быть получен нагреванием до высокой температуры (плавлением) аморфной формы или, например, при кристаллизации из расплавленных карбонатов щелочных металлов[2].
Упругость пара ВеО незначительна, поэтому в отсутствие паров воды это наименее летучий из всех тугоплавких оксидов. Примесь таких оксидов, как MgO, CaO, Al2O3, SiO2, ещё больше понижает летучесть ВеО из-за химического взаимодействия между ними. В присутствии паров воды при 1000—1800°С летучесть оксида бериллия сильно возрастает в связи с образованием газообразного гидроксида бериллия.
Оксид бериллия обладает очень высокой теплопроводностью. При 100° С она составляет 209,3 Вт·м−1·К−1, что больше, чем теплопроводность любых неметаллов (кроме алмаза и карбида кремния) и большинства металлов (кроме меди, серебра, золота, алюминия и ряда их сплавов)[4][5]. При понижении температуры теплопроводность оксида бериллия сперва растёт (370 Вт·м−1·К−1 при 300 К), достигая максимума (13 500 Вт·м−1·К−1) при 40 К, затем понижается (47 Вт·м−1·К−1 при 4 К)[5].
Химические свойства
Реакционная способность оксида бериллия зависит от способа его получения и от степени прокаливания. Повышение температуры при прокаливании ведет к увеличению размера зерен (то есть к уменьшению удельной поверхности), а, следовательно, и к уменьшению химической активности соединения.[2]
Прокаленный при температуре не выше 500 °С, оксид бериллия растворяется в водных растворах кислот и щелочей (даже разбавленных), образуя соответствующие соли и гидроксобериллаты. Например:
Оксид бериллия, прокаленный при температуре от 1200 до 1300 °С, растворим в растворах концентрированных кислот. Например, прокаленный таким образом ВеО реагирует с горячей концентрированной серной кислотой:
Прокаливание оксида бериллия при температурах выше 1800 °С приводит к практически полной утрате им реакционной способности. После такого прокаливания ВеО растворяется только в концентрированной плавиковой кислоте (с образованием фторида) и в расплавленных щелочах, карбонатах и пиросульфатах щелочных металлов (с образованием бериллатов):
Выше 1000 °С оксид бериллия реагирует с хлором, при этом в присутствии угля данная реакция идет легче и при гораздо меньших температурах (600—800°С):
При температуре выше 1000 °С оксид бериллия ступает в обратимую реакцию гидрохлорирования (понижение температуры системы вызывает обратный процесс разложения образовавшегося хлорида бериллия):[2]
При нагревании оксид бериллия способен реагировать со многими хлорсодержащими соединениями. В частности, уже при 500 °С начинается реакция с фосгеном:[2]
Хлорирование тетрахлорметаном протекает при температуре 450—700 °С:
Гораздо труднее оксид бериллия взаимодействует с бромом, сведений же о взаимодействии ВеО с иодом нет.
Оксид бериллия реагирует далеко не всеми обычно применяемыми восстановителями. В частности, для восстановления бериллия из оксида применимы лишь кальций, магний, титан и уголь (при высокой температуре). Кальций и магний могут быть использованы в качестве восстановителя при температуре ниже 1700 °С и атмосферном давлении, титан применим при давлении ниже 0,001 мм рт. ст. и 1400 °С:
В обоих случаях бериллий получается загрязненным, так как технически очень трудно разделить продукты реакции.
Использование угля более предпочтительно, но реакция с ним идет лишь при температурах выше 2000 °С:
Оксид бериллия при температурах ниже 800 °С устойчив по отношению к расплавленным щелочным металлам (литию, натрию и калию) и почти совсем не реагирует с церием, платиной, молибденом, торием и железом; только при 1800 °C взаимодействует с никелем, кремнием, титаном и цирконием[2][6].
Применение
Сочетание высокой теплопроводности и небольшого коэффициента термического расширения позволяет использовать оксид бериллия в качестве термостойкого материала, обладающего значительной химической инертностью.